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The purpose of this research is to identify underlying unity in optimization methods, and to use
the resulting insights to combine methods so as to exploit complementary strengths. In particu-
lar, we propose strategies for the integration of mathematical programming, constraint program-
ming, dynamic programming, and heuristic methods. We report achievements in seven specific
approaches to unification: high-level modeling, finite-domain cuts, bounds from decision diagrams,
primal heuristics from decision diagrams, decision diagrams and dynamic programming, logic-based
Benders decomposition, and unification of exact and heuristic methods.

The publications associated with this research appear in the reference list at the end of the report.
We note that some of our results appear in the doctoral dissertations [11] and [12], the former of
which received the 2014 Doctoral Thesis Award of the Association for Constraint Programming. A
chapter of the latter received the 2014 Student Paper Award of the INFORMS Computing Society.

1 Modeling

The aim of our modeling research is to design a modeling framework that is conducive to integrating
technologies. A key to integrated modeling is to formulate a problem with high-levelmetaconstraints,
which are inspired by the “global constraints” of constraint programming (CP). A metaconstraint
enforces a structured set of more elementary contraints. For example, scheduling constraints that
require that jobs run one at a time can be enforced with a single noOverlap constraint. Metacon-
straints have the advantage that they convey problem substructure to the solver. This contrasts with
the atomistic modeling style of mixed integer programming (MIP) and satisfiability (SAT) solvers,
which relies on the solver to detect structure in an undifferentiated collection of inequality or clausal
constraints.

Metaconstraints enable integrated modeling because a single high-level constraint can invoke
search, inference, and relaxation techniques from several technologies. In fact, an important com-
monality of optimization methods is that they all rely on search, inference, and relaxation, with CP
emphasizing inference and MIP emphasizing relaxation. Thus a noOverlap constraint can invoke
inference methods from CP technology, such as edge-finding rules and other filtering techniques. It
can generate polyhedral relaxations and cutting planes from MIP. It can also help guide the search
by suggesting a branching rule that can be applied when the constraint is violated. We systemati-
cally developed the advantages of metaconstraint-based modeling in a long book chapter [1], which

1Carnegie Mellon University
2University of Miami
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contrasts CP and MIP modeling on the one hand with integrated modeling on the other for a wide
variety of problems.

Our work on metaconstraints raised a fundamental issue that must be resolved before integrated
modeling can be successful. Metaconstraints invoke relaxations and reformulations that typically
introduce auxiliary variables. The problem is that variables created by different metaconstraints
may in fact be identical, or otherwise related, and this must be recognized if one is to have a tight
relaxation and effective filtering. We address this problem with semantic typing of variables. The
modeler assigns semantic types to the original variables, and the modeling system automatically
assigns semantic types to auxiliary variables. The types given to variables indicate whether they
are equivalent or otherwise related. An additional advantage of semantic typing is that it imposes
a natural structure and organization on the model, allowing it to be more readable and providing
consistency checks.

Semantic typing is implemented by organizing a model around predicates, which denote relations
among variables, much as in a relational database. A variable is declared by associating it with a
predicate and a keyword that acts analogously to a database query. To take a very simple example,
consider an assignment problem in which xi is the job assigned to worker i, yj is the worker assigned
to job j, and cij is the cost of assigning i to j. There are restrictions on which workers are assigned
to a given job, and vice-versa, as well as other constraints. The problem can be written

min
∑

i

cixi

alldiff(x1, . . . , xn), alldiff(y1, . . . , yn)

xi ∈ Xi, all i, yj ∈ Yj , all j

additional constraints

where the alldiff constraints require the variables listed to take distinct values. The modeling system
might generate a classical assignment problem relaxation for the first alldiff:

∑

j

δij = 1, all i,
∑

j

δij = 1, all j

where 0-1 variable δij = 1 when xi = j, and similarly for the second alldiff:
∑

j

δ′ij = 1, all i,
∑

j

δ′ij = 1, all j

The objective might also be written in terms of 0-1 variables:

min
∑

ij

cijδ
′′

ij

The auxiliary 0-1 variables δij , δ
′

ij , and δ′′ij are actually equivalent and should be replaced by the
same variable in the relaxation. This is accomplished by semantic typing as follows.

To begin with, the model is organized around a predicate that matches workers and jobs, such
as assign(worker,job). The variables are declared

x[i] is which job assign(worker i)

y[j] is which worker assign(job j)

where reserved words are underlined. Because xi and yj are related to the same predicate by a
which keyword, the modeling system generates channeling constraints to relate the two variables:

xyj
= j, all j; yxi

= i, all i
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The system also generates a type declaration for the auxiliary variables as they are introduced.
Because they are related to the same predicate in the same way, the variables δij , δ

′

ij and δ′′ij are
given the same declaration:

whether assign(worker i, job j)

Since these variables receive the same type, they are identified in the relaxation, as desired.
Semantic typing is developed in our paper [2], which illustrates the idea for piecewise linear

modeling, employee scheduling, ad placement, latin squares, disjunctions of linear systems, temporal
modeling with interval variables, and traveling salesman problems with side constraints.

In future work, we intend to code a modeling system that will be freely distributed and allow
practitioners to convert a model written with semantic typing to problem specifications that can be
input to popular solvers.

2 Finite-Domain Cuts

This arm of our research combines the finite-domain modeling approach of CP with polyhedral
analysis of MIP. It begins with the fact that CP typically formulates combinatorial problems with
finite-domain variables, while MIP uses 0-1 variables. This suggests the possibility of conducting
polyhedral analysis of the convex hull of the feasible set in the finite-domain space, rather than in
the 0-1 space as in MIP. The finite-domain cutting planes that result can then be mapped into 0-1
space to be combined with traditional 0-1 cuts.

We found that for at least one classical problem, this procedure results in tighter bounds than can
be obtained from all known 0-1 cuts, and the bounds are calculated in much less time because fewer
cuts are necessary. Our initial results appear in [3], while [4] provides a fuller mathematical treatment
that proves theoretically the superiority of finite-domain cuts. We also provided polynomial-time
separation algorithms for the cuts.

We focused on the classical graph coloring problem, which asks how a minimum number of colors
can be assigned to vertices of a graph so that adjacent vertices receive different colors. CP formulates
the problem using multiple all-different constraints and finite-domain variables xi that indicate the
color that is assigned to vertex i of a graph. For any clique Vk of the graph, the variables xi for
i ∈ Vk are required to take different values. MIP formulates the problem using 0-1 variables yij that
indicate whether vertex i receives color j. The MIP model is

min
∑

j

wj

∑

j

yij = 1, all i

∑

i∈Vk

yij ≤ wj , all j, k

where 0-1 variable wj = 1 when color j is used, and k indexes all cliques Vk of some clique cover. A
cut in the xi-space is mapped to a cut in 0-1 space simply by replacing each xi by

∑
j jyij .

We studied cuts based on cycles, webs, and paths in the graph. The path cuts are redundant
of known 0-1 cuts, but cycles and webs yield facet-defining finite-domain cuts that produce tighter
bounds that known 0-1 cuts. Proving these results required that we advance beyond the polyhedral
proof techniques that are used for conventional 0-1 cuts. Figure 1 illustrates a cycle of five all-
different constraints, each indicated by a solid oval. For example, V1 corresponds to the constraint

alldiff(x0, x1, x2, x3, x10, x11)
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Figure 1: A cycle of all-different constraints that gives rise to finite-domain cuts. The solid ovals
correspond to constraints alldiff(Vk) for k = 1, . . . , 5.

This cycle gives rise to the valid cuts

x1 + · · ·+ x9 ≥ 20

z ≥ 1

10
(x1 + · · ·+ x9) + 2

where z indicates the largest color number. These two cuts alone provide a tighter bound than
the corresponding classical clique inequality combined with all 320 odd-hole cuts for this cycle. We
obtained similar results for webs (Fig. 2).

We tested the method on 23 DIMACS benchmark instances. For finite-domain cuts we used
only a subset of the cycle cuts, identified heuristically. We compared them with a collection of
all classical odd-hole cuts using the clique cover formulation above, which is the tightest known
MIP formulation. Even though graph coloring is one of the most intensely studied combinatorial
problems, we obtained tighter bounds in 8 of the instances. More importantly, we obtained nearly
all of the bounds more rapidly, in some cases one or two orders of magnitude more rapidly.

These results suggest that finite-domain cuts could profitably augment the linear relaxation
currently used in MIP solvers. They could combine with or replace the traditional cuts to obtain
better bounds in less time. Because we provide fast and complete separation algorithms, the solution
of the current linear relaxation can be used to generate separating cuts in very little time at deeper
nodes in the search tree.

3 Bounds from Decision Diagrams

In this research we investigate a second technique for obtaining optimization bounds from CP,
namely from relaxed decision diagrams. Decision diagrams have been used historically for circuit
design and verification, as well as product configuration. We built on previous work that adapted
decision diagrams to constraint solving and optimization, in particular as a device for strengthening
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Figure 2: Web W (7, 2), which is an odd antihole. Variables connected by an edge appear in a
common alldiff constraint. A feasible solution is shown.

propagation and filtering in CP solvers. The key to this work is to represent the feasible set with a
relaxed decision diagram of limited width.

In an optimization problem, a relaxed decision diagram can provide a bound on the optimal value
equal to the length of a longest (or shortest) path through the diagram. One can obtain a bound
of any desired tightness by increasing the maximum width of the relaxed diagram, recognizing that
a wider decision diagram requires more computation time. We found that for at least one classical
problem, decision diagrams can provide tighter bounds, in much less time, than the full cutting
plane resources of a state-of-the-art MIP solver. These results are presented in [7], which relies on
results in [5, 6].

We focused on the stable set problem, which is defined on a graph in which the vertices are as-
signed weights. The problem is to find a maximum-weight subset of vertices for which no two vertices
are adjacent. Figure 3 shows an exact and relaxed binary decision diagram (BDD) representing a
small stable set problem. Here the binary variable xi = 1 when vertex i is included in the stable set.
A solid arc corresponds to setting xi = 1, and a dashed arc to xi = 0. The top-to-bottom paths in
the exact BDD correspond exactly to the possible stable sets. Paths in the relaxed BDD correspond
to a superset of the possible stable sets. The relaxed BDD has width 1 in this case because there
is at most one node per layer. If the solid arcs are given lengths equal to the corresponding vertex
weights, a longest path through the relaxed BDD provides an upper bound on the maximum weight
of a stable set.

Figures 4 and 5 compare the quality of bounds obtained from decision diagrams and a commercial
MIP solver for random and DIMACS benchmark instances, respectively. A lower curve indicates
better bounds. Average relative bounds are plotted against the density of the graph. The graphs
show that decision diagrams of almost any reasonable width provide tighter bounds for random
instances than can be obtained at the root node of a state-of-the-art MIP solver, except perhaps for
the sparsest graphs, even though the MIP solver benefits from cutting plane and presolve techniques
that have been developed over a 50-year period. The results for DIMACS instances are similar. For
these instances, the smallest BDDs (width 100) often provide weaker bounds, but width-1000 BDDs
still provide tighter bounds than MIP, and much more rapidly.

In fact, the best news is that decision diagrams require less computation than MIP to obtain
bounds. Only the diagrams of maximum width 10000 require computation time similar to that of
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Figure 3: (a) Instance of the stable set problem. (b) Exact BDD for the instance. (c) Relaxed BDD
for the instance.

the MIP solver, while diagrams of width 1000 can be processed at least an order of magnitude more
rapidly. This suggests that decision diagrams can significantly strengthen the bounds used in an
MIP solver while adding very little to computation time.

4 Primal Heuristics from Decision Diagrams

BDDs can also be restricted, as opposed to relaxed, in order to obtain valid primal bounds (feasible
solutions) to optimization problems. This is achieved during the construction of the BDD by drop-
ping nodes from layers that exceed the maximum allowed width, resulting in a BDD that includes
a subset of all feasible solutions to the problem it represents. We used restricted BDDs to solve two
classical binary optimization problems, set covering and set packing, but our approach is applicable
to binary optimization in general. These results are presented in [8].

Our experiments were performed on a set of randomly generated instances. For both the set
covering and set packing problem, we considered combinatorial instances (all costs equal to 1) as
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Figure 4: Bound quality vs. graph density for random instances, showing results for LP only, LP
plus cutting planes, and BDDs with maximum width 100, 1000, and 10000. Each data point is the
geometric mean of 20 instances.

well as weighted instances with arbitrary costs. Our restricted-BDD heuristic was compared against
the heuristic capabilities of a state-of-the-art commercial MIP solver, which implements several
different general-purpose heuristic methods.

For the set covering problem, solutions obtained by the restricted BDD can be up to 30% better
on average than solutions obtained by the MIP solver. This advantage progressively decreases as
either the bandwidth of the coefficient matrix A increases, or its sparsity decreases. In general, the
BDD performs better on weighted instances. In terms of execution time, the BDD approach has a
slight advantage over the MIP approach on average, and can be up to twice as fast.

For the set packing problem, the BDD approach exhibits even better performance on both the
combinatorial and weighted instances. Its solutions can be up to 70% better on average than the
solutions obtained by the MIP solver, with the BDD performing better on weighted instances than on
combinatorial instances once again. Unlike what happened in the set covering case, BDD solutions
were always at least as good as the ones produced by the MIP solver. In addition, the BDD’s
performance appears to improve as the bandwidth of A increases. As the sparsity of A changes, the
BDD’s performance is good for sparse instances, drops at first as sparsity starts to increase, and
tends to slowly increase again thereafter. In terms of execution time, the BDD approach can be up
to an order of magnitude faster than the traditional MIP approach.
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Figure 5: Bound quality vs. graph density for DIMACS instances, showing results for LP only, LP
plus cutting planes, and BDDs with maximum width 100, 1000, and 10000. Each data point is the
geometric mean of instances in a density interval of width 0.2.

5 Decision Diagrams and Dynamic Programming

The aim of this research is to combine decision diagrams and dynamic programming so as to obtain
a more powerful solver that uses recursive models but does not solve them recursively. We believe
this approach could generate a new research stream in dynamic programming, because recursive
models that were previously intractable can now be attacked with BDD technology.

We arrived at this synthesis while building a general-purpose solver for discrete optimization
that is based on decision diagrams, described in [9]. The solver uses branch-and-bound search, but
it obtains bounds from decision diagrams, as described earlier, rather than from linear relaxations.
It also uses restricted decision diagrams for primal heuristics. Most significantly, it employs a com-
pletely novel branching method that branches within a relaxed decision diagram. Briefly, it identifies
the lowest layer of the diagram that is exact, meaning that the relaxed diagram is indistinguishable
from an exact diagram down to that layer. It then branches on the nodes of that layer by creating
a new relaxed decision diagram rooted at each node, and continues in this fashion.

This is related to dynamic programming (DP) for the following reason, as explained in [10]. A
decision diagram is essentially a DP state transition graph, and a relaxed decision diagram merges
some of the DP states. In fact, we build a decision diagram by associating nodes with states. This
means that we model a problem by stating a DP recursion, along with a rule for merging states to
create a relaxation. However, we do not solve the model by searching the state space, as is done in
DP, because the recursion is used only to obtain bounds and primal heuristics. Rather, we solve the
problem by branch and bound. As a result, it is of little concern whether the state space explodes
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Figure 6: Average solution time for MCP instances (n = 30 vertices) using BDDs (with LEL and FC
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exponentially. Our main concern is whether the choice of state variables provides good bounds,
given that we merge states that lie on poor solution paths. This opens the door to practical use of
recursive models that have been historically intractable due to the curse of dimensionality.

We tested the BDD solver on three standard problems: the stable set problem mentioned earlier,
the maximum cut problem, and the maximum 2-SAT problem. We deliberately chose problems that
have simple and well-accepted MIP models. We found that the BDD solver is competitive with or
superior to a state-of-the-art commercial MIP solver on these instances.

Figure 6 shows results for the maximum cut problem, in which a graph with edge weights is
given, and the objective is to partition the vertices into two sets connected by edges of maximum
total weight. Obviously, the MIP solver benefits greatly from the presolve routine, but even with
it, the BDD-based solver is faster on all but the sparsest instances, and much faster on the denser
instances. In fact, the solution time is indistinguishable from zero on the graph for all instances.
Figure 7 shows performance profiles for the maximum 2-SAT problem using two types of branching
procedures in the relaxed BDD. Here the objective is to satisfy the maximum number of logical
clauses in a 2-satisfiability problem. MIP is faster at solving the easier instances (where a fast solver
is not needed anyway), but the BDD solver excels on the harder instances.

The real test of a BDD-based solver is on the many problems that have dynamic programming
models but no convenient MIP model. Even problems with simple MIP models may become difficult
to formulate in MIP when side constraints are added, whereas a dynamic programing model is very
flexible at accommodating side constraints and state-dependent objective functions. The constraints
and objective function need only be expressible in terms of the current state and control. Black-box
constraints are easily incorporated and actually make the problem easier by reducing the size of the
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Figure 7: Time profile for 100 MAX-2SAT instances with n = 30 variables (left) and n = 40
variables (right), comparing BDDs and CPLEX (with and without presolve). LEL and FC refer to
two branching schemes in the relaxed BDD.

relaxed BDD.
As future research, we intend to address large industrial problems with recursive formulations

that are intractable for conventional dynamic programming and difficult to model as MIPs. In fact,
BDD-based optimization has the potential to scale up to sizes that are beyond the reach of MIP,
because there is no need to load a large inequality model into the solver. The model is essentially
constant size because it is a recursion. The largest data structure is the relaxed BDD, whose size is
controlled by the width. The results reported above were obtained with a maximum width of only
5 at nodes below the root node, so that memory requirements were not an issue. Recent experience
suggests that a BDD-based solver also parallelizes much more efficiently than MIP, with near-linear
speedups. These factors point the way toward successful large-scale optimization with BDD-based
solvers that use dynamic programming models.

6 Logic-Based Benders Decomposition

Logic-based Benders decomposition (LBBD) has been used for some years to combine CP and MIP,
usually by solving the master problem with MIP and the subproblem with CP. LBBD has the
advantage that the subproblem need not be a linear (or nonlinear) inequality model as in classical
Benders decomposition, but can be any optimization problem. Benders cuts are generated by solving
the inference dual of the subproblem, which is analogous to the linear programming dual in classical
Benders.

We advanced LBBD on four fronts. First, we did a fresh comparison in [13] of LBBD with
state-of-the-art MIP on planning and scheduling problems, in response to some reports that LBBD
was losing its advantage due to advances in MIP. We found that LBBD continues to run 100 to
1000 times faster than the latest commercial MIP solvers on these problems. This is partly because
LBBD improves when MIP improves, due to the fact that the master problem is solved by MIP.

Second, we applied LBBD in [14] to a problem that does not decompose naturally, namely a
single-facility scheduling problem with a long time horizon. We created subproblems by breaking
the time horizon into segments, which requires rather complicated Benders cuts. Some sample results
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Table 1: Computation times in seconds for the segmented problem with tight time windows. The
number of segments is 10% the number of jobs. Ten instances of each size are solved.

Feasibility Makespan Tardiness
Jobs CP MILP Bndrs CP MILP Bndrs CP MILP Bndrs

60 0.1 14 1.9 60 7.7 6.4 0.1 16 3.0
80 181∗ 45 2.7 420∗ 147 11 63∗ 471∗ 20
100 199∗ 58 4.3 600∗ 600 17 547∗ 177∗ 11
120 272∗ 137 4.8 600∗ 600 39 600∗ 217∗ 2.9

140 306∗ 260∗ 6.8 600∗ 432∗† 33 600∗ 373∗ 5.0
160 314∗ 301∗ 8.0 600∗ 359∗ 14

180 600∗ 350∗† 4.8 600∗ 557∗† 5.3

200 600∗ † 5.8 600∗ 600∗† 6.6

∗Solution terminated at 600 seconds for some or all instances.
†MILP solver ran out of memory for some or all instances, which are omitted from the
average solution time.

appear in Table 1 for three types of problems: feasibility problems, minimum makespan problems,
and minimum tardiness problems. In these instances, the processing of a job cannot overlap two
adjacent time segments, as when the shop shuts down for weekends. LBBD is clearly superior to
MIP and CP. The advantage of LBBD is less dramatic when jobs can overlap adjacent segments,
but the advantage remains, and it is likely to increase as the time horizon grows. This is because
the MIP model relies on time-indexed variables that increase in number for longer time horizons,
while the time segments and therefore the LBBD subproblems can remain constant size.

Third, we applied LBBD to robust scheduling in a IT service center scheduling problem, and a
preliminary report appears in the conference paper [15]. We use robust scheduling with an empir-
ically determined uncertainty set. Vectors of processing delays for the jobs are assumed to lie in
a polyhedral uncertainty set that represents realistic contingencies. An optimal robust schedule is
one that minimizes the worst-case total delay, where the worst case is defined as the worst case in
the uncertainty set. We prove that an optimal schedule can be obtained by examining only extreme
points of the uncertainty set. Furthermore, we show that this problem can be formulated using an
LBBD model in which the worst-case calculation is the subproblem. This allows the use of Benders
cuts to speed solution, which has not been previously done in robust optimization. Computational
testing is still underway, but preliminary results indicate that LBBD is faster than MIP.

Finally, we combined LBBD with decision diagrams by representing the Benders master problem
as a decision diagram. When a Benders cut is generated, they are reflected in the master problem by
modifying the decision diagram in a way that excludes the same solutions excluded by the Benders
cuts. This poses a general separation problem for decision diagrams, which is analogous to the
separation problem for polyhedral theory. We prove in [16] that the separating decision diagram can
grow exponentially as cuts are added, but in practice it tends to grow linearly (Fig. 8). Our goal is
to apply this technique to the home health care scheduling problem, work that is now underway.

7 Unifying Exact and Heuristic Methods

We argue in [17] that many exact and heuristic methods have common structure that permits some
degree of unification. This is because many solution algorithms can be interpreted as primal-dual
methods in which the primal component searches over problem restrictions, and the dual component
obtains bounds on the optimal value. In particular, the concept of an inference dual provides the
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Figure 8: Growth of the separating decision diagram in the master problem, versus the number
of Benders iterations, for several instances of a home health care scheduling problem. The curves
terminate when the instance is solved.

basis for constraint-directed search, which is a feature of many exact and heuristic methods. The
motivations for unification are (a) to encourage the exchange of algorithmic techniques between
exact and heuristic methods, and (b) to design solution methods that transition gracefully from
exact to heuristic modes as problem instances scale up.

We first identify primal-dual structure various exact algorithms, as summarized in Table 2.
These include the simplex method, branch-and-bound-methods, satisfiability solvers, and Benders
decomposition. We then find the same structure in such heuristic methods as local search, tabu
search, evolutionary algorithms, ant colony optimization, and particle swarm optimization. The
scheme appears in Table 3. We also indicate how algorithmic ideas can be exchanged between exact
and heuristic methods, and where possible, how a single algorithm can be designed to transition
from one to the other.
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[9] D. Bergman, A. Ciré, W.-J. van Hoeve, and J. N. Hooker, Discrete optimization with decision
diagrams, submitted 2014.

[10] J. N. Hooker, Decision diagrams and dynamic programming, C. Gomes and M. Sellmann, eds.,
CPAIOR 2013 Proceedings, 94–110.

[11] D. Bergman, New methods for discrete optimization, Ph.D. thesis, Carnegie Mellon University,
2013.
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